Model Answer

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner may tryto assess the understanding level of the candidate.
3) The language errors such as grammatical, spelling errors should not be given morelmportance (Not applicable for subject English and Communication Skills.
4) While assessing figures, examiner may give credit for principal components indicated in thefigure. The figures drawn by candidate and model answer may vary. The examiner may give credit for anyequivalent figure drawn.
5) Credits may be given step wise for numerical problems. In some cases, the assumed constantvalues may vary and there may be some difference in the candidate's answers and model answer.
6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
7) For programming language papers, credit may be given to any other program based on equivalent concept.

$\mathrm{Q} .$ No.	$\begin{aligned} & \text { Sub } \\ & \text { Q. N. } \end{aligned}$	Answers	Marking Scheme
		SECTION -I	
1	(A)	Attempt any SIX of the following:	12- Total Marks
	(a)	Define self induced Emf. Write equation of self induced Emf.	2M
	Ans:	Definition: Self-induced emf is the e.m.f induced in the coil due to the change of flux produced by linking it with its own turns. Or Self induced emf is that which is induced in a coil, due to the change in its own current or flux. Self induced emf equation. $\mathrm{E}=-\mathrm{N}(\mathrm{~d} \Phi / \mathrm{dt}) \text { volts }$	1M def 1M eq.

WINTER-19 EXAMINATION
Subject Name: Basic Electrical and Electronics Engineering
Model Answer

WINTER-19 EXAMINATION

Subject Name: Basic Electrical and Electronics Engineering

Model Answer

22310

	values during one alternation. Or Average value:-average value is that value is obtained by averaging all the instantaneous values of its wave over a period of half cycle. lav=0.637 Imax	
e)	State applications of single phase AC motors.	2M
Ans:	- Water pumps - ceiling fan \& air conditioners. - lathe machine - washing machines. - Blowers - Mixers \& grinders - Compressors - Conveyers - Refrigerators. [Note:any other relevant application can consider]	(any two of such applicati ons)
f)	Write the Emf equation of transformer. State the meaning of each term in it.	2M
Ans:	EMF equation of Transformer:- $\mathrm{E} 1=4.44 \mathrm{f} \phi \mathrm{mN} 1 \quad \mathrm{OR} \quad E 1=4.44 \mathrm{fBmAN} 1$ $E 2=4.44 \mathrm{f} \phi \mathrm{mN} 2 \quad \mathrm{OR} \quad \mathrm{E} 2=4.44 \mathrm{f}$ Bm AN2 Let, E1 = Primary emf E2 $=$ Secondary emf N1= Number of turns in the primary N2= Number of turns in the Secondary $\varnothing m=$ Maximum flux in core ($w b$) Bm= Flux density (wb/m2/Tesla) A=Area of cross section of core m2 $\mathrm{F}=$ Frequency	1M for each equatio n

WINTER-19 EXAMINATION

Model Answer

	g)	Define- (i) Current (ii) Potential difference	2M
	Ans:	i) Current :- electric current is defined as the movement of electronics or flow of electronics inside the conducting material. Unit-ampere(A) ii) Potential Difference: The difference between the electrical potentials at any two given points in the electrical circuit is known as potential difference between those points.	1m each definitio n
	h)	State Faradays laws of electromagnetic inductions.	2M
	Ans:	First Law: -Whenever change in the magnetic flux linked with a coil or conductor, an EMF is induced in it. Whenever a conductor cuts magnetic flux, an EMF is induced in conductor. Second Law: The Magnitude of induced EMF is directly proportional to (equal to) the rate of change of flux linkages.	First law 1 Mark Second law 1 Mark
$\begin{array}{\|l} \text { Q. } \\ \text { No. } \end{array}$	$\begin{aligned} & \text { Sub } \\ & \text { Q. N. } \end{aligned}$	Answers	Marking Scheme
2		Attempt any THREE of the following:	12- Total Marks
	a)	Draw and explain B-H curve.	4M

WINTER-19 EXAMINATION

Subject Name: Basic Electrical and Electronics Engineering

Subject Code:

Model Answer

WINTER-19 EXAMINATION

Model Answer

WINTER-19 EXAMINATION

Subject Name: Basic Electrical and Electronics Engineering

Model Answer

OURPaqe Thers :

Model Answer

Active power(Kw)	Descript ion : 1M Significa nce : 1M
OR	

WINTER-19 EXAMINATION

Subject Name: Basic Electrical and Electronics Engineering

Model Answer

WINTER-19 EXAMINATION
Subject Name: Basic Electrical and Electronics Engineering
Model Answer

WINTER-19 EXAMINATION

Subject Name: Basic Electrical and Electronics Engineering

Subject Code:
Model Answer

	Electric Circuit 2)E.M.F is the source to pass current 3) Current in Amperes; current density in $\mathrm{A} / \mathrm{m}^{2}$ 4) current $\frac{E M F}{\text { Resistance }}$ 5) Resistance $=\mathrm{R}=\frac{\delta l}{a}$ and is constant 6) Conductance $=1 / R$ 7) Energy is wasted as long as the current lasts	Magnetic Circuit 2) MMF is the source to pass flux (MMF is caused by flow of current) 3) ϕ is in webbers; flux density wb / m 4) Flux $=\frac{\mathrm{MMF}}{\text { Reluctance }}$ 5) Reluctance $=\frac{L}{\mu_{0} \mu_{r} A}$ It veries as μ_{r} is variable 6) Permeanance $=1 /$ Reluctance 7) Energy is required to establish the flux only and not for maintaning it.	
e)	Describe the construction and wo	king principle of auto transformer.	4M
Ans:	An auto transformer ha winding. This winding is wound	single winding which is used as primary and secondary laminated enameled magnetic core.	(Constru ction (diagra m) - 2 marks,

ourpeqenters:
KALYAN | DOMBIVLI | THANE | NERUL | DADAR
Contact - 9136008228

WINTER-19 EXAMINATION

Model Answer

WINTER-19 EXAMINATION
Subject Name: Basic Electrical and Electronics Engineering
Subject Code:

$\begin{aligned} & \text { Q. } \\ & \text { No. } \end{aligned}$	$\begin{aligned} & \text { Sub } \\ & \text { Q. N. } \end{aligned}$	Answers	Marking Scheme
3		Attempt any TWO of the following :	12- Total Marks
	a)	Describe the operation of inductor with sinusoidal AC voltage as input. Draw waveform for voltage across and current through the inductor. Draw its phasor representation.	6M
	Ans:	An alternating voltage is applied to a purely inductive coil, a back e.m.f. is produced due to self-inductance of the coil. The back e.m.f. at every/step, opposes the rise of fall of current through the coil. As there is no ohmic voltage drop, the applied voltage has to overcome this self induced e.m.f. only. If applied voltage is represented by $v=V_{m} \operatorname{Sin} \omega \mathrm{t}$, then current flowing in a purely inductive circuit is given by $i=I_{m} \operatorname{Sin}\left(\omega t-\frac{\pi}{2}\right)$ Wave form of purely inductive circuit : Phasor diagram :	2 Marks for Descript ion 2 Marks for voltage and current eqution 1Marks for wavefor m 1Marks for

WINTER-19 EXAMINATION

Subject Name: Basic Electrical and Electronics Engineering

Subject Code:

```
22310
```


Model Answer

		Phasor diagram
b)	Describe the construction and working principle of single phase AC motor.	6M
Ans:	construction and working principle of single phase AC motor Single phase induction motors have a phase distributed winding on the stator and a squirrel cage short-circuited winding on the rotor. When this single phase winding is connected to an alternating voltage source, an alternating field is produced varying only with time. Such an alternating field acting on a stationery squirrel cage rotor cannot produce rotation. But, if once the rotor is moved, the rotor produces a cross flux that is in both space and tjme quadrature with the stator flux. There are two necessary conditions to produce a rotating field. Hence, once the motor is started, the single phase motor will continue to rotate as long as the load torque is not excessive. OR	2 Marks for Descript ion 2 Marks for working principle 2 Marks for any relevant diagram

WINTER-19 EXAMINATION

Subject Name: Basic Electrical and Electronics Engineering

Subject Code:

Model Answer

Abstract

[any other diagram showing AC motor can be consider] This particulate behavior of motor has been explained in two ways i) by two field or double field revolving theory and ii) by cross field theory

Single phase induction motor is not inherently self-starting. However, if rotor is given an initial rotation in any direction, the single phase induction motor develops torque and rotor continues to pick up speed in that particular direction.

However, they are made self starting providing the various special arrangements such as splitphasing (with the help of resistance or capacitor) or using shaded poles which enable them to have a rotating magnetic field atleast at starting.

OR

- Alternating flux is produced around the stator winding due to AC supply. This alternating flux revolves with synchronous speed. The revolving flux is called as "Rotating Magnetic Field" (RMF).
- The relative speed between stator RMF and rotor conductors causes an induced emf in the rotor conductors, according to the Faraday's law of electromagnetic induction. The rotor conductors are short circuited, and hence rotor current is produced due to induced emf. That is why such motors are called as induction motors.
(This action is same as that occurs in transformers, hence induction motors can be called as rotating transformers.)
- Now, induced current in rotor will also produce alternating flux around it. This rotor flux lags behind the stator flux. The direction of induced rotor current, according to Lenz's law, is such that it will tend to oppose the cause of its production.
- As the cause of production of rotor current is the relative velocity between rotating stator flux and the rotor, the rotor will try to catch up with the stator RMF. Thus the rotor rotates in the same direction as that of stator flux to minimize the relative velocity. However, the rotor never succeeds in catching up the synchronous speed. This is the basic working principle of induction motor of either type, single phase of 3 phase.

Model Answer

WINTER-19 EXAMINATION

Subject Name: Basic Electrical and Electronics Engineering

Model Answer

ENGINEERING

		Transformer consists of two windings that are electrically isolated from each other. When a time varying voltage is applied to one winding, it sets up an alternating flux in the magnetic core. Due to the high permeability of the core, most of the flux links the other winding and induces and alternating e.m.f. in that winding. The frequency of the induced e.m.f. in the winding is same as that of the voltage in the first winding. If the other winding is connected to the load, the induced e.m.f. in the winding circulate a current in it. Thus, the power is transferred from one winding to the other through the magnetic flux in the core. [This answer is enough for explaining construction of transformer] [The transformer consists of following i) magnetic circuit consisting of links (core), yokes and clamping structures (providing the flux path) ii) Electric circuit consisting of primary and secondary windings iii) dielectric circuit consisting of insulation in different forms and used at different places in the transformer (core to the primary winding, primary winding to secondary winding etc). iv) Tank and accessories] this is optional answer. Principle of transformer: The operation of the transformer is based on the principle of mutual induction between two circuits linked by a common magnetic field.	1 mark for Principle of transfor mer
$\mathrm{Q} \text {. }$ No.	Sub Q. N.	Answers	Marking Scheme
		SECTION - II	
4		Attempt any FIVE of the following :	10-Total Marks
	(a)	Define active components. Give two examples.	2M

WINTER-19 EXAMINATION

Subject Name: Basic Electrical and Electronics Engineering

Subject Code:

Model Answer

WINTER-19 EXAMINATION

Subject Name: Basic Electrical and Electronics Engineering

Model Answer

	ripple and allowing the (pure or steady) d.c. voltage to reach the load.	nt
(e)	Define α. Give the relationship between α and β.	2M
Ans:	Alpha ($\boldsymbol{\alpha}$)- It is ratio of collector current I_{C} to emitter current I_{E} of a transistor. $\text { Alpha }(\boldsymbol{\alpha})=I_{C} / I_{\mathrm{E}}$ relationship between α and β $\alpha=\frac{\beta}{1-\beta} \quad \text { and } \quad \beta=\frac{\alpha}{1-\alpha}$	1 mark for definito n 1 mark for relation ship
(f)	Define the following with respect to BJT. (i) Input resistance (ii) Output resistance	2M
Ans:	Input resistance: It is the ratio of small change in emitter -to-base voltage $\left(\Delta \mathrm{V}_{\mathrm{EB}}\right)$ to the resulting change in emitter current $\left(\Delta I_{E}\right)$ for a constant collector to base voltage $\left(V_{C B}\right)$ $\mathbf{R}_{\mathbf{i}}=\frac{\Delta V_{E B}}{\Delta I_{E}} / \mathrm{V}_{\mathrm{CB}}=\text { constant }$ Output resistance: It is the ratio of small change in collector -to-base voltage $\left(\Delta V_{C B}\right)$ to the resulting change in collector current $\left(\Delta I_{c}\right)$ for a constant emitter current $\left(I_{E}\right)$. $\mathbf{R}_{\mathbf{o}}=\frac{\Delta \mathbf{V}_{C B}}{\Delta \mathrm{I}_{C}} / \mathrm{I}_{\mathrm{E}}=\text { constant }$ OR Input Resistance Depending on type of configuaration of BJT input resistance of BJT is ratio of voltage between input terminal and common terminal to current through input terminal. Output resistance Depending on type of configuaration of BJT output resistance of BJT is ratio of voltage between output terminal and common terminal to current through output terminal.	1 marks Input resistan ce 1 marks output resistan ce

WINTER-19 EXAMINATION
Subject Name: Basic Electrical and Electronics Engineering
Subject Code:

Model Answer

WINTER-19 EXAMINATION

Subject Name: Basic Electrical and Electronics Engineering

Subject Code:

Model Answer

our Peqeqters:

WINTER-19 EXAMINATION
Subject Name: Basic Electrical and Electronics Engineering
Model Answer

	Closed switch Table indicating transistor as switch [NOTE: Table with two diagram also sufficient to explain transistor as switch 2 mark for diagram/and 2 mark for table.]	
b)	Draw and explain the operation of zener as a voltage regulator.	4M
Ans:	Zener diode Voltage Regulator The function of a regulator is to provide a constant output voltage to a load connected in parallel with it in spite of the ripples in the supply voltage or the variation in the load current	Diagram -2marks, operatio n2marks

ENGINEERING

WINTER-19 EXAMINATION

Subject Name: Basic Electrical and Electronics Engineering

Model Answer

	and the zener diode will continue to regulate the voltage until the diodes current falls below the minimum $\mathrm{I}_{\mathrm{Z}(\min)}$ value in the reverse breakdown region. It permits current to flow in the forward direction as normal, but will also allow it to flow in the reverse direction when the voltage is above a certain value - the breakdown voltage known as the Zener voltage. The purpose of a voltage regulator is to maintain a constant voltage across a load regardless of variations in the applied input voltage and variations in the load current. The resistor is selected so that when the input voltage is at $\mathrm{V}_{\mathrm{IN}(\min)}$ and the load current is at $\mathrm{I}_{\mathrm{L}(\max)}$ that the current through the Zener diode is at least $\mathrm{I}_{(\min)}$. Then for all other combinations of input voltage and load current the Zener diode conducts the excess current thus maintaining a constant voltage across the load. Shunt regulators have an inherent current limiting advantage under load fault conditions because the series resistor limits excess current. A zener diode of break down voltage V_{z} is reverse connected to an input voltage source V_{i} across a load resistance R_{L} and a series resistor R_{s}. The voltage across the zener will remain steady at its break down voltage V_{z} for all the values of zener current I_{z} as long as the current remains in the break down region. Hence a regulated DC output voltage $V_{0}=V_{z}$ is obtained across RL, whenever the input voltage remains within a minimum and maximum voltage.	
c)	Define filter. State its types. Draw any one filter with input and output waveform.	4M
Ans:	Defination : Filter is a circuit which remove or filtered out the AC component (ripple) Types of filter 1. Shunt Capacitor filter (C filter) 2. Series Inductor filter (L filter) 3. LC filter 4. π filter (CLC filter) Shunt Capacitor filter (C filter)	Definati on1mark, diagram -1 mark, types1mark, wavefor m1mark

WINTER-19 EXAMINATION
Subject Name: Basic Electrical and Electronics Engineering
Model Answer

WINTER-19 EXAMINATION

Subject Name: Basic Electrical and Electronics Engineering

Model Answer

(d)	(i) Draw the time domain and frequency domain representation of sine wave and triangular wave. (ii) Define frequency and wavelength.	4M
Ans:	(i)Time domain and frequency domain representation of sine wave	1 Mark each
	 time domain and frequency domain representation of triangular wave.	

WINTER-19 EXAMINATION

Subject Name: Basic Electrical and Electronics Engineering

Subject Code:

Model Answer

WINTER-19 EXAMINATION
Subject Name: Basic Electrical and Electronics Engineering
Model Answer

Figure A
practical voltage source
While the practical voltage source can supply only limited amount of current to the load. Also, practical voltage source has series internal resistance. due to this internal resistance; voltage drop takes place, and it causes the terminal voltage to reduce.

Figure B
(ii) Compare CB, CC and CE configuration (two points)

Parameter	CB	CE	CC
Input impedance	Very Low(less than 100 ohm)	Low(less than 1K)	Very High(750K)
Output impedance	Very High	High	Low
Current gain	Less than 1	High	Very high
Voltage gain	Greater than CC but less than CE	Highest	Lowest(less than 1)
Parameter	OR	CB	CC
Input terminal	emitter	Base	base

OURP2qe27ers:
KALYAN | DOMBIVLI | THANE | NERUL | DADAR

WINTER-19 EXAMINATION
Subject Name: Basic Electrical and Electronics Engineering
Subject Code:
22310
Model Answer

		Output terminal	collector	collector	emitter
		common	base	emitter	collector
		Input current	Ie	Ib	Ib
		Output current	Ic	Ic	Ie
		Current gain	$\begin{aligned} & \text { Alpha=Ic/Ie less than } \\ & 1 \end{aligned}$	Beta=Ic/Ib greater than 1	$\begin{aligned} & \text { Gamma=Ie/Ib } \\ & \text { large } \end{aligned}$
		Input voltage	Veb	Vbe	Vbc
		Input Resistance	Medium	High	Medium
		Output Resistance	Very high	High	low
		Voltage gain	150	500	unity
		Power gain	Medium	High	medium
		PHASE	In phase	180 phase shift	In phase

Q. No.	Sub Q.N.	Answers	Marking Scheme
6.		Attempt any TWO of the following:	12-Total Marks
	a)	(i) Compare between analog and digital IC. (ii) Find the value of resistor from the given color code. (1) Brown, Black, Red, Silver (2) Orange, Red, Brown, Gold	6 M

WINTER-19 EXAMINATION

Subject Name: Basic Electrical and Electronics Engineering

Subject Code:

Model Answer

Ans:	(i) Compare between analog and digital IC. (ii) Find the value of resistor from the given color code. (1) Brown, Black, Red, Silver (2) Orange, Red, Brown, Gold 1) $10 * 10^{2}=10 * 100=1000$ ohm $=1 \mathrm{kohm}, 10 \%$ 2) $32 * 10^{1}=320 \mathrm{ohm}, 5 \%$	(i) $1 / 2$ mark each point (ii) 1 mark each calculati on
b)	Draw the circuit diagram and describe the working principle of full wave bridge rectifier. Draw its waveforms.	6M
Ans:	During the first half cycle During the first half cycle of the input voltage, the upper end of the transformer secondary winding is positive with respect to the lower end. Thus during the first half cycle diodes D1 and D_{3} are forward biased and current flows through arm $A B$, enters the load resistance R_{L}, and returns back flowing through arm DC. During this half of each input cycle, the diodes D_{2} and D_{4} are reverse biased and current is not allowed to flow in arms $A D$ and $B C$. The flow of current is indicated by solid arrows in the figure above. We have developed another diagram below to help you understand the current flow quickly. See the diagram below - the green arrows indicate the beginning of current flow from the source (transformer secondary) to the load resistance. The red arrows indicate the return path of current from load resistance to the source, thus completing the circuit.	Diagram 2marks, working 2marks, wavefor m- 2marks

WINTER-19 EXAMINATION
Subject Name: Basic Electrical and Electronics Engineering
Model Answer

During the second half cycle
During the second half cycle of the input voltage, the lower end of the transformer secondary winding is positive with respect to the upper end. Thus diodes D_{2} and D_{4} become forward biased and current flows through arm CB, enters the load resistance R_{L}, and returns back to the source flowing through arm DA. The flow of current has been shown by dotted arrows in the figure. Thus the direction of flow of current through the load resistance R_{L} remains the same during both half cycles of the input supply voltage. See the diagram below - the green arrows indicate the beginning of current flow from the source (transformer secondary) to the load resistance. The red arrows indicate the return path of current from load resistance to the source, thus completing the circuit.

WINTER-19 EXAMINATION
Subject Name: Basic Electrical and Electronics Engineering
Subject Code:

Model Answer

Rectified Output Voltage/Current Waveforms BRIDGE RECTIFIER
www.CircuitsToday.com

OR

Description in simple

At positive half cycle the Diode D1 and D3 will be forward biased and current path will be Terminal A, Diode D1,Terminal B, Resistor RL, terminal D, diode D3, and terminal C back to transformer and output will positive half cycle. At the negative half cycle diode D2 and D4

WINTER-19 EXAMINATION
Subject Name: Basic Electrical and Electronics Engineering
Subject Code:

Model Answer

ENGINEERING

WINTER-19 EXAMINATION

Subject Name: Basic Electrical and Electronics Engineering

Model Answer

current I_{E}. The electrons enter into the P-type material and combine with the holes.

The base of the NPN transistor is lightly doped. Due to which only a few electrons are combined and remaining constitutes the base current I_{B}. This base current enters into the collector region. The reversed bias potential of the collector region applies the high attractive force on the electrons reaching collector junction. Thus attract or collect the electrons at the collector.

The whole of the emitter current is entered into the base. Thus, we can say that the emitter current is the sum of the collector or the base current.

Active region.

The region between cut off and saturation is known as active region. In the active region, collector-base junction remains reverse biased while base-emitter junction remains forward biased. Consequently, the transistor will function hormally in this region.

Saturation.

The point where the load line intersects the $I B=I B(s a t)$ curve is called saturation. At this point, the base current is maximum and so is the collector current. At saturation, collectorbase junction no longer remains reverse biased and normal transistor action is lost.

$$
I_{C(s a t)} \simeq \frac{V_{C C}}{R_{C}} ; \quad V_{C E}=V_{C E(\text { sat })}=V_{\text {knee }}
$$

If base current is greater than $I B(s a t)$, then collector current cannot increase because collector-base junction is no longer reverse-biased.
OR
Both junction are forward bias and ouput current change with output biasing voltage transistor in saturation region. In this region transistor act as closed switch.

Cut off.
The point where the load line intersects the $I B=0$ curve is known ascut off. At this point, $I B=$ 0 and only small collector current (i.e. collector leakage current ICEO) exists. At cut off, the base-emitter junction no longer remains forward biased and normal transistor action is lost. The collector-emitter voltage is nearly equal to VCC i.e. VCE (cut off) $=$ VCC

OR

WINTER-19 EXAMINATION

Subject Name: Basic Electrical and Electronics Engineering

Model Answer

| | Both junction are reversed bias and ouput current is Zero with input current is Zero transistor in cut
 off. In this region transistor act as open switch | |
| :--- | :--- | :--- | :--- |

